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FOREWORD 

This document has been prepared,by the Data Processing Systems 
Division of the National Bureau of Standards under Task 5932. 01 for 
the Air Force Electronic Systems Division in support of Hq AFSC PD 
650A.   It is the final report of the study broadly entitled "In-Line Trans- 
lators. "   In actuality the scope is much more limited since devices 
properly called "in-line" translators (matrix converters) are in use 
throughout the data network in great numbers.   However, none of these 
are being used for radix conversion.   This report is concerned with 
in-line translators for radix conversion which do not yet exist, and 
which can find profitable application in the specific instance of data 
message conversion. 

The purpose of the study has been to determine the feasibility of 
applying this technique to data networks, to determine how best to 
design such devices and to establish designs.   It has also been our 
purpose to uncover heretofore unrealized problems of design and 
application of these devices. 

Textual preparation, assistance, editing, and printing were done 
by Edward T. Johnson and Associates of Washington, D. C. 

Arthur A. Ernst 
Project Manager 
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ABSTRACT 

The application of In-Line Translators is covered in terms of 
the specific adaptation of a wired program device which can effi- 
ciently handle the translation between different numerical radices 
or number base codes.   Design criteria, feasibility, and a function- 
al description are presented. 

Since the Radix Converter is the central and primary modular 
element of the translator concept, the logic designs for four princi- 
pal types of decimal/binary converters are described in detail. 
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Section 1.    INTRODUCTION 

1.1  GENERAL. 

1.1.1 A particular problem in the integration and augmentation of 
existing information handling networks is the inconsistency in the for- 
mat of data passed between various points in the data network.   At 
times of peak data loads when data equipment is working at near capac- 
ity, these incompatibilities have the potential of causing major ineffi- 
ciencies to occur.   Format disparities can be classified as those 
resulting from the message composition, the code symbolism utilized, 
and the physical characteristics associated with transmission and 
receipt.   (Figure 1) 
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1.1.2  The problem of message data incompatibility can be solved all 
or in part by an all encompassing standardization, by wired programs, 
by stored programs, or by a combination of these.   However, when 
considered one at a time, none of these solutions lend themselves to 
the problem as the one best solution. 



1.1. 3 A wholesale standardization of formats is a difficult process to 
implement when consideration is given to factors such as the immediate 
outmoding of equipment which would result, the attendant huge problem 
of revising procedures throughout the data network complex, and the 
time and cost that would be required to change over to new procedures 
and equipment. 

1.1. 4 Physical formatting translation is necessarily handled by Terminal 
Logic with conventional modulation and demodulation devices.   Code 
character translation can be handled readily either through the use of 
Matrix Converters or Table Look-Up Techniques. 

1.1. 5  Composition inconsistencies in message structure and content can 
and are being rectified through the use of wired program devices.   How- 
ever, in view of the large number of differently configured special 
devices required to obtain network compatibility, it seems reasonable 
that stored programs would be better suited for this purpose.   Con- 
versely, the translation between different numerical radices or number 
base codes are being handled by stored programs when it could be done 
more effectively by wired program converters where the work load 
justifies the initial hardware cost. 

1.1. 6 It is the purpose of this study to demonstrate that this latter 
problem can be efficiently handled by means of wired logic converters 
and that such converters can be useful in reaching the goal of adequate 
real-time operation and can offer a significant economic advantage 
for heavy data flow over data conversion by means of stored programs. 

1.2 OBJECTIVE. 
It is the objective of this study to: 

(1) Establish whether satisfactory translators can be designed 
to perform specified routine in-line translation for high vol- 
umes of data. 
(2) Establish whether construction of such translators is 
feasible in terms of cost and as a useful augmentation to cur- 
rently installed computers. 
(3) Establish the basic characteristics required of in-line trans- 
lators. 
(4) Establish design criteria. 
(5) Develop logic designs of BCD to binary and binary to BCD 
converters. 
(6) Develop logic designs of time in BCD to binary and time in 
binary to BCD converters. 

1.3 APPROACH. 
The translator when interposed between a particular data source 



and receptor must be capable of accepting the data signals, converting 
the data and generating signals suitable for use by the data receptor. 
The approach taken in this study has been first to analyze the trans- 
lator as an entity in the data system.   Following this, the data conver- 
sion problem has been removed from its system interface in order  to 
assure a radix converter design which is readily adaptable for use 
throughout the data network.   This can be achieved if the data for con- 
version is preconditioned and standardized by an input unit of the trans- 
lator prior to entry into the radix converter.   After conversion, the 
data is organized for transmission to the data receptor by an output unit. 
Thus, the translator has been separated into an Input Buffer, Composition 
Controller, Radix Converter, and an Output Buffer.   Logic designs of 
the converter have been developed as a part of the study; a design of the 
complete translator can be developed for any specific application for 
which a given set of values for input data and the characteristics of the 
data line are stipulated. 



Section 2.     DESIGN CRITERIA 

2. 1   RELIABILITY. 

2.1.1  The system reliability of a data stream is equal to the product of 
the reliabilities of all the units in the stream.   Therefore, the reliability 
of each element placed in series is of particular importance.   A malfunc- 
tion in an in-line unit of a data stream can alter or even destroy data 
passing through it.   For this type of function, reliability should only be 
limited by the feasibility of construction and economic practicality. 

2.1. 2   Current techniques in the utilization of solid state components 
lend themselves to achieving this end.   The use of components which 
require regular maintenance, frequent performance checks, and adjust- 
ment should be avoided.   Similarly, the circuits employed must follow 
good design techniques, be held to a minimum, and be relatively insensi- 
tive to power line fluctuations or to disruptive signals which may be 
generated by neighboring devices. 

2.1. 3  The device should be capable of sustained operations with a mini- 
mum amount of maintenance.   Design of the unit should include careful 
consideration of the need for the ready detection of malfunctions and ease 
of repair. 

2. 2   CONVERSION SPEED. 
The translator must not introduce a data lag any greater than now 

experienced and should, for the sake of system improvement, actually 
improve on current processing times.   It is preferable to have unused 
capacity at a minor additional cost than to require a particular circuit 
design for every speed requirement; therefore, translators are to be 
designed for the highest practical speed of operation within the limits 
of reasonable costs and currently available solid state circuitry-.   The 
designed processing limit will be 100,000 six bit characters per second 
which is at about the ceiling of the current magnetic tape transport 
capability. 

2.3  PRECISION 
Translators are to be designed to accomodate a precision rate of one 

part per billion.   Included will be a provision for operating at a lower 
precision of one part per million by a simple adjustment and/or deletion 
of components. 



2.4 ADAPTIVENESS. 
The design of the translator should permit a maximum amount of 

flexibility in application.   This built-in adaptivity will obviate the 
necessity of designing a special device for every translator applica- 
tion. 

2.5 INDEPENDENCE. 
The translator is to be a self-contained independent entity capable 

of being inserted in the data line and functioning thereafter without 
further external assistance. 



Section 3.     IN-LINE TRANSLATORS 

3. 1   FUNCTIONAL DESCRIPTION. 
In actuality, the translator will be composed of approximately ten 

modular units.   However, for purposes of explanation, consider that 
the translator is composed of four principal elements; an Input Buffer, 
a Composition Control Unit, a Radix Converter, and an Output Buffer. 
(Figure 2a and 2b)  The following is a basic description of the processes 
occurring in these elements. 

3.1.1 Input Buffer.   Since the required translation could include changes 
in the physical, code, and composition format, parity checks, and data 
flagging, the radix conversion may only be a part of the complete trans- 
lation process.   For this reason it is desirable to make the converter 
"system independent."   The first step in achieving this in the interception 
of the data from the data link by an input unit which alters the incoming 
message to make it acceptable for introduction into the Composition 
Control Unit.   In this input unit there may be a demodulator which puts 
the proper physical format on the received signal for further passage 
in the translator.   Thus, the input unit is capable of accepting the input 
signal, physically adjusting, and storing the input message. 

3.1. 2   Composition Control Unit.   This is a wired program device which 
essentially integrates and controls the operations of the translator.   It 
controls the transfer of measurement data into the radix converter and 
controls the composition of the output message.   The incoming message 
procedural data, such as headers and flags, are separated from the 
measurement data by an implicit or explicit wired program and stored 
for later recombination after data conversion.   If there is to be a data 
quality check it will be done on receipt in the Composition Control Unit. 
Also in this unit the measurement data is assembled and restructured as 
necessary for code and radix conversion.   The measurement data is 
separated into characters or syllables for introduction into the radix 
converter.   However, these characters may not be in the code for which 
the converter was designed and it may therefore be necessary to insert 
an additional step before the data conversion process.   If the code is 
incompatible, a code standardization operation will be provided.   This 
step may be required, for example, in converting data from BCD to 
binary.   At the completion of this process all data entered into the radix 
converter will be in the form of 8-4-2-1 characters called BYTES. 
Because the number of bits of translated data will not agree with the 
number sent into the translator, the Composition Control portion must 
either make it possible to add or delete characters from the string if 
they are received and produced serially, or to enter blank characters 
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where a fixed parallel format is used.   When the measurement data is 
received in a form unsuitable for convenient conversion, the incoming 
data characters are assembled and stored in the input buffer until the 
complete measurement data is available.   It is then restructured into 
the proper form for conversion by the Composition Control Unit.   This 
step will cause a time lag in addition to the delay caused by the conver- 
sion process which is equal to the time required to receive the entire 
measurement word. Since the tasks of these units may vary consider- 
ably from use to use, it may be necessary to provide a variety of such 
modules for translators. 

3.1. 3  Radix Converter.   The radix conversion will be accomplished by 
a wired-program unit.   A minimum of storage operations will be included 
in order to keep conversion speed high.   Arithmetic operations are 
accomplished, as much as possible, by stream methods in which the 
output responds to the inputs within a settling-down-time which is small 
compared to an incoming character period.   For example, in the BCD 
to binary converter, the time required to handle each incoming char- 
acter is expected to be about 6 microseconds.   The Radix Converter is 
covered in further detail in Section 4. 

3. 1. 4  Output Buffer.   The output interface presents a problem similar 
to that of the input interface.   Here the output unit provides the neces- 
sary storage, places the converted data in the correct code format, and 
under the control of the Composition Control Unit, places the outgoing 
message in the proper composition format.   Finally, the interface sec- 
tion of the output unit places the outgoing signal in the required physical 
format.   The physical format change may require a modulator; the code 
format change may require a wired matrix to go from 8-4-2-1 to BCD 
or whatever code is used by the receptor.   The Composition Control and 
Output Unit combine to keep the flow of characters or words proceeding 
at the rate at which they enter so as to obviate the need for storage of 
data or to minimize the delay through the translator.   Since not all data 
in a message are converted, some may be bypassed onto the line while 
the rest goes through the converter.   The translator control unit handles 
this type of traffic pattern, allowing only data to be converted to go to 
the converter. 

3. 2  DESIGN FEASIBILITY. 
From an analysis of a wide range of variable input and output require- 

ments and the structure of the designs associated with these requirements, 
the general problems associated with the design of in-line translators 
have been organized into a manageable form.   As a consequence, it has 
been determined that the design and construction is technically feasible 
within the present state of the art, and that the elements required for 
construction are commercially available at reasonable cost. 

9 



3. 3   EMPHASIS ON RADIX CONVERTER DESIGN. 
The premise throughout this study has been to design a translating 

device which can be readily inserted at any required point in the data 
network with a minimum of re-configuration.   As previously indicated, 
the wide range of possible data requirements and associated variables 
have been considered in the determination of design feasibility.   The 
study has demonstrated that it is highly practical to meet the particular 
requirements of a given application by the addition, deletion, or restruc- 
turing of modular units of a basic translator.   However, until the specific 
input/output values are stipulated for a point of application, any detailed 
design of the entire translator unit would be purely an academic exercise. 
Primary design effort has therefore been concentrated on the Radix Con- 
verter.   This unit is the core of the translator and is designed to have 
unlimited application for a specific type of conversion regardless of the 
individual interface requirements of the complete translator. 

10 



Section 4.     RADIX CONVERTERS 

4.1  GENERAL. 
To relieve the central data processors of part of the data conversion 

burden, it is proposed to provide several types on in-line translators. 
In particular, four types are being considered: 

(1) Translation of data from BCD to binary. 
(2) Translation of data from binary to BCD. 
(3) Translation of data from time in hours, minutes, seconds, 
and milliseconds to binary milliseconds. 
(4) Translation of time in binary milliseconds, to hours, minutes, 
seconds, and milliseconds. 

As previously explained, the heart of this translation process is in the 
Radix Converter.   This section outlines in detail the design parameters 
and the logic design in the four types of converters. 

4. 2   DESIGN PARAMETERS AND GENERAL DESCRIPTION. 

4.2.1 The converters are designed to handle pure measurement data up 
to 100,000 six bit characters per second.   At lower input rates the con- 
verter has been designed to convert the incoming data BYTE at its max- 
imum rate, store the results and await the next BYTE to be processed. 
Higher data rates will be accommodated by the use of parallel conversion 
for which converters have been designed. 

4. 2. 2  A data precision of one part per billion or a number containing 
nine decimal digits or 30 bits has been designed into the converter. 
For cost and circuit comparison purposes, circuits for a lower preci- 
sion rate of one part per million have also been designed.   Some 
economy can be achieved where very short numbers are to be handled 
by omitting some of the circuitry required for the higher precision 
while retaining the basic universal module. 

4. 2. 3  To further promote design simplicity, wherever possible the 
data measurements are considered to be in terms of the smallest unit 
employed, thus making the entire measurement a whole number.   For 
example, hours, minutes, and seconds would each be expressed in 
milliseconds. 

4. 2. 4 Two basic types of conversion methods have been developed.   The 
first of these (serial conversion) converts the data measurement piece- 
meal serially by character or BYTE, using iterative operations.   The 
second (parallel conversion) operates on the entire data measurement in 
a systematic way in a single operation.   Being more economical of 
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circuitry, the serial conversion will generally be used even when the 
incoming data is received broadside.   However, short processing time 
requirements'may demand that parallel conversion be utilized.   Figures 
3 and 4 demonstrate that the circuitry required for parallel operations 
greatly exceeds that needed for serial operation for precision capabili- 
ties in excess of one part per 100,000. 

4. 3   CONVERSION OF DATA FROM BCD TO BINARY. 

4. 3.1  Let Di D2 D3 D4 represent a 4 decade decimal number.   The rank 
of each digit is expressed by writing the number in its explicit form: 

Dl X1000 + D2 X100 + D3 X10 + D4 
Rewriting this number in the equivalent nested form demonstrates 
the decimal to binary process: 

Di D2 D3 D4 = 10 (10 (10D! + D2) + Dg) + D4 
Again, consider a number whose digits are: 

Di D2 D3 D4 
Di is the most significant digit and D4 is the least significant.   Using 
binary operations, Di is multiplied by ten (1010) and D2 is added to the 
product to obtain the intermediate sum Si.   Si is in turn multiplied by ten 
and D3 is added to this product to obtain the next intermediate sum S2. 
The process is updated to obtain the sum S3 which is the required binary 
equivalent of Di E^ D3 D4. This process is summarized as follows: 

10 Di + D2 = Si 
10 Si + D3 = S2 

10 S2 + D4 = S3 

4. 3. 2  In the serial conversion process, each digit is processed in a sep- 
arate cycle.   Thus the determination of each intermediate sum is a separate 
conversion step in the iterative process.   The parallel conversion process, 
on the other hand, involves a single stream operation on a chain of adders. 
In our example, digits Di and D2 are combined to form the sum S-^ which 
is immediately thrust forward to be combined with D3 to form the sum 
S2.   The process continues uninterrupted until the conversion is. complete. 
Actual multiplication is avoided; instead, multiplication by ten is accom- 
plished by adding twice the multiplicand to eight times the number.   This 
process involves binary shift operations. 

4. 3. 3  Figures 5 and 6 are relevant to the exposition which follows.   For 
serial operations the converter consists of an Augend Register, an Addend 
Register, a Sum Buffer, stream binary adders, a Data Switch, and con- 
trol circuitry.   To simplify the latter, each cycle processes only one digit. 
With each new value to be converted a signal is included which clears the 
Augend and Addend Registers. 

4. 3. 4 When the first (most significant) BCD 4 bit BYTE is loaded into 
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the Addend Register the converter performs the first cycle of the con- 
version process at its designed rate.   Using binary operations, each 
cycle consists of multiplying the contents of the Augend Register by ten 
and adding the contents of the Addend Register; this sum is temporarily 
stored in the Sum Buffer and then transferred to the Augend Register. 
The cycle is repeated with each remaining most significant digit until 
the conversion is complete. 

4. 3. 5  The time sequences of events (Figure 6) in the conversion of 
BCD numbers to binary commences with the arrival of the signal SQ 
signifying that a new measurement is ready for processing.   SQ clears 
the Augend and Addend Registers by allowing time TQ to be internally 
generated.   Next, when the first measurement BYTE is ready for pro- 
cessing, the signal Si permits the Addend Register to be loaded with the 
BYTE which is then processed with the value being held in the Augend 
Register.   However, since this is the first BYTE of a new measurement 
the Augend Register is empty and the value is passed to the pre-cleared 
Sum Buffer at time T3 where it is held pending the next internally gen- 
erated T]_.   The next generated TQ clears the Addend and Augend Regis- 
ters and at the following self-generated Ti time the Augend Register is 
loaded with the contents of the Sum Buffer through the Data Switch.   If 
the next input signal Si does not appear at this time, operations are sus- 
pended pending its receipt.   In this way the converter adapts itself to 
any input rate.   When Si appears the next most significant BYTE is 
introduced into the Addend Register where it is added to ten times the 
value of the contents of the Augend Register.   While this process is still 
going on, the generated T2 causes the Sum Buffer to be cleared and T3 
allows the new summation to be loaded in the Sum Buffer.   Again, as 
the cycle re-commences at TQ, the Augend and Addend Registers are 
cleared of the old values and at Ti the new value is placed in the Augend 
Register.   The process continues as before until the last BYTE is ready 
for processing.   At the signal S2 indicating the final BYTE, the Data 
Switch is shifted to "Conversion Completed" and the converted value is 
loaded into the Output Buffer.   The converter then halts to await the 
next Start of Message Signal. 

4. 3. 6  Data presented in parallel can be converted by the device outlined 
in Figure 7, which uses the same mathematical principal as used in the 
serial BCD conversion.   This device contains a 36 bit register plus 
eight groups of stream binary adders that process nine decade decimal 
numbers.   Referring to the figure, the data word is stored in the Regis- 
ter.   The number then has its BCD (BYTES) presented to the adder 
groups which follow.   Thus the most significant digit Di is combined 
with its neighbor D2 to form 10 Di + D2 in the first set of adders.   The 
interim sum Si which results then appears at the input of the next set 
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of adders where it is in turn combined with the next most significant 
digit.   In this way the combining processes ripple through the sets of 
adders until the completely converted number is finally gated out through 
the Output Buffer. 

4. 3. 7  A circuit design for the serial converter is shown in Figure 8. 
Figure 9 shows the circuit symbols and conventions used in this report. 
To estimate the size of this converter the concept of a normalized 
module is employed.   A normalized module is a printed circuit board 
that may contain any of the following functional units: 

1/4       Bit Decoder 
1/3      Divider Network 
1/2       Combined X4 Multiplier and Adder 
1 Full Binary Adder 
2 Half Binary Adders 
4 Flip Flops 

10 NOR Gates 
10 Drivers 

For purposes of calculating circuit delay, the converter shall be built of 
circuitry that does not introduce more than 0. ly sec gating delay per stage 
and the cycle time for the flip flops shall not exceed 0.2 usec.   These 
circuit requirements are easily met with materials currently available at 
reasonable cost. 

6 Decade ENM 9 Decade       ENM 

Input Buffer Flip Flops 
Control Flip Flops 
Clock 

12 
12 

1 

3 
3 
1 

12 
12 

1 

3 
3 
1 

NOR Gates 10 1 10 1 
HexLdecimal Decoder 1 1 1 1 
Addend Register Flip Flops 
Augend Register Flip Flops 
Sum Buffer Flip Flops 
Stream Adders/Full Adders 
Drivers 

4 
17 
20 
20 
10 

1 
5 
5 

20 
1 

4 
27 
30 
30 
10 

1 
7 
7.5 

30 
1 

Equivalent Normalized Modules 41 56 
Conversion Delay 25 usec 56 ysec 

4. 3. 8  Figure 3 demonstrates the quantity of circuitry required vs. conver- 
sion delay in series and parallel converter operations capable of accomo- 
dating from two to nine decade numbers. 
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4. 3.9  The tally of circuit components required for parallel conversion 
is as follows: 

6 Decade      ENM       9 Decade      ENM 
Converter Control 

Clock 1 1 1 1 
Flip Flops 8 2 8 2 
Hexidecimal Decoder 1 1 1 1 
NOR Gates 10 1 10 1 

Converter 
Word Buffer Flip Flops 24 6 36 9 
NOR Gates 5 1 8 1 
Half Adders 15 8 24 12 
Full Adders 48 48 116 116 
Drivers 4 1 4 1 

Equivalent Normalized Modules 69 144 
Conversion Delay 4 usec 6 usec 

4. 3. 10  Referring again to Figure 3 it can be seen that the serial converter 
can meet the conversion speed requirement.   For a data precision of one 
part per million or less the parallel conversion technique is competitive 
with the serial conversion technique in the amount of circuitry required. 
At a precision of one part per billion, however, the serial conversion 
method requires only about 40% of the amount required for parallel con- 
version.   In terms of time required for conversion, the parallel conver- 
sion method is much more rapid. 

4. 4   BINARY TO BCD CONVERSION. 

4. 4. 1   Since a 30 bit binary number converts to 9 decades in decimal or 
36 bits in Binary Coded Decimal, the incoming message structure must 
contain 6 bits of zeros or other expendable data to permit the input and 
output transmission rates to be the same.   There are at least three 
feasible methods for converting data from binary to BCD.   In all of these 
methods the more significant bits are processed first. 

4. 4. 1.1  Method 1.   The decimal equivalent of each binary bit is summed 
in a decimal accumulator. 

4. 4. 1.2 Method 2. A binary number up to and including 1001 (the equiv- 
alent of 9 in decimal numbers) may also be considered as a BCD number. 
This method takes advantage of this by dividing the data word into BYTES 
containing up to 3 bits (octal). By treating these BYTES as decimal num- 
bers and by using decimal operations, the binary number is converted 
to a BCD representation.   Each BYTE then would be ranked according 
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to powers of the radix.   In the general case, the radix referred to may- 
differ from 2 according to whether the data word is converted by bit or 
by BYTE.   As in the above case, when the data word is subdivided into 
fixed length BYTES, the radix has a value of two raised to the power 
that corresponds to the number of bits in the BYTE.   Conversion is effec- 
ted by using decimal operations in the following recursive iterations: 
The first cycle is completed when the most significant BYTE is multiplied 
by the value of the radix while the next most significant BYTE is added 
to the product.   The succeeding iterations are performed by multiplying 
the resulting sum obtained in the preceding iteration by the value of the 
radix and adding the next most significant BYTE outstanding to the result. 
This procedure is terminated when the least significant BYTE is finally 
included in the resulting sums. 

4. 4. 1. 3  Method 3.   This method is a casting out of tens process.   The 
data word and the quotients obtained are divided by ten to yield successive 
remainders whose values correspond to the decimal digits in increasing 
powers of ten. 

4. 4. 2  A brief description of the implementation of each method follows. 

4. 4. 2.1  Implementation of Method 1.   In this method the BCD equivalent 
of each binary bit of a data word is summed by decimal adders.   The 
following description refers to Figures 10 through 13. 

4. 4. 2.1.1  The Start of Message Signal (SQ in Figure 10) clears the Aug- 
end Register, the Data Character Buffer, and the Data Bit Counter at 
time TQ.   The first data character is loaded by signal Si into the 6-bit 
shift register called the Data Character Buffer, to initiate the conversion 
process at time T]_.   The major bit of the Data Character Buffer and the 
number stored in the Data Bit Counter determine the value of the BCD 
number serving as the Addend to the decimal adders.   The Bit to BCD 
Equivalent Decoder is used to generate the proper BCD equivalent for 
each binary bit.   This number and the BCD number stored in the Augend 
Register are added together by the stream decimal adders (see Figure 
11).   While these quantities are being added together, the Sum Buffer is 
cleared at the generated Tg.   The sum is stored in the Sum Buffer at 
T3.   The Augend Register is cleared at TQ to complete the conversion 
of the first bit to BCD.   At T]_, a new addition cycle is initiated when the 
Augend Register is loaded with the contents of the Sum Buffer; the Data 
Character Buffer has its contents shifted one bit position to the left; and 
the Data Bit Counter is increased by one.   When all 6 bits of the first 
character have been processed, the conversion can proceed only when the 
next character is loaded into the Data Character Buffer.   This action may 
occur at T^ for uninterrupted conversion; otherwise, the conversion halts 
until it does.   If this is the case, the status of the converter is: The 

23 



SI «   Tl     LOAD   DATA 
(6 BITS) 

To     CLEA R 

Tl     ADD   I 

SO ■ TO or TO   CLEAR 

Tl 

V) 
z o 
t- 

o 

UJ 

UJ > 

8 

n 
AUGEND REGISTER 

Tl 

INPUT  DATA 
30 BIT WORD 

BIT 
COUNTER! 

DATA 
CHAR   BUFFER 

TIVTI 

Tl 

SHIFT LEFT 
I BIT POSITION 

BIT TO BCD   DECODER 
(ADDEND REGISTER) 

LINES Tl 

STREAM   DECIMAL AODERS 

CLEAR 
T2 

T3 

SUM   BUFFER 

INCOMPLETE 

COMPLETE 

OUTPUT  DATA BUFFER 

FIGURE 10.SERIAL BY BIT   STREAM  BINARY-BCD CONVERTER 

IS-I 

24 



er 
UJ 
o 
Q 
< 

s 
3 
ü. 

3 

ä£8 25 



8 
Q 
< 
i 

Li. 
_l 
< 
I 

> 
a 
o 

c\i 
LÜ 
cr 
3 
O 
Li. 

26 



Q: 
UJ 

8 
< 
i 

d 
3 
U_ 
_) 
UJ 
> 
a 
8 
H 
ro 

S 
2 

27 



Augend-Register is storing the BCD equivalent of the first character, 
the Data Character Register is empty, and the Data Bit Counter stores 
a count of six.   'The succeeding characters are processed in the same 
way as the first.   While the fifth data character is being processed, and 
after the Data Bit Counter has been incremented to a count of 29, at T2 
the Data Switch is set to the "Conversion Completed" state.   As a con- 
sequence, when the final bit has been processed and the Augend Register 
has been cleared at TQ the data in the Sum Buffer is loaded to the Out- 
put Buffer, the Data Bit Counter is cleared, and the Data Switch reset 
to the " Conversion Not Complete" state.   The converter may now accept 
the first character of the next data word for processing. 

4. 4. 2.1.2  One measure of the practicality of this method for conversion 
is the calculation of the conversion speed, which is obtained by multiply- 
ing the gating delay per stage by the total number of gating levels involved 
for the entire conversion.   The gating delays are introduced by the deci- 
mal adders employed in the method.   The type chosen is a compromise 
between the quantity of circuitry required and the delay with which the 
decimal carry and BCD sums are generated.   The two BCD digits and the 
decimal carry from the preceding decade are added together in a two stage 
process to generate a BCD sum and decimal carry.   First these quanti- 
ties are added together as binary quantities (Figure 11).   Then six is added 
to the result when the sum exceeds 9.   By this means the BCD sum and 
decimal carry are generated by gating through 16 and 10 levels of logic, 
respectively.   Half adders and full adders of the type shown in Figures 
12 and 13 are used because they can generate the sum, the carry, and 
their respective complements, by gating through only two levels of logic. 
Using the established circuit design parameters of 0.1/^sec gating delay 
per stage and 0.2# sec flip flop cycle time, the conversion delay for a 
30 bit binary is 294  sec.   This is nearly five times the acceptable limit 
of 60/<sec.   To achieve the speed desired using this method required 
circuitry having less than 0. 02« sec gating delay per stage.   Within the 
techniques and materials currently available this type of response cannot 
be easily or economically achieved and is therefore considered to-be an 
impractical approach.   The number of addition cycles can be reduced by 
the pairing of certain bits so that their BCD equivalents are superposed 
to form a composite BCD equivalent.   However, only a 20% time reduc- 
tion can be achieved and this only at the cost of assembling the entire data 
word prior to conversion and greatly complicating the control circuitry. 

4. 4.2.1. 3  The method described above requires the following circuitry: 
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30 Bit 20 Bit 
Data Word ENM Data Word ENM 

Decimal Adders 9 9 6 6 
Flip Flops: 36 9 24 6 

Augend Sum Buffer 36 9 24 6 
Data Character Buffer 6 1.5 6 1.5 
Data Bit Counter 5 1.25 5 1.25 

Bit to BCD Equivalent Matrix 1 4 1 4 
Drivers 10 1 7 1 
Control 6 6 6 6 

Equivalent Normalized Modules 31 22 

4. 4. 2. 2   Implementation of Method 2.   To implement this method, it is 
expedient to divide the incoming data word into two bit (quantenary) 
characters as a compromise between the complexity of the required cir- 
cuitry and the number of required iterations. 

4. 4. 2. 2.1  The Start of Message Signal SQ (see Figures 6,  14,  15, and 
16) starts the conversion process by clearing the Augend and Addend 
Registers at time Tg.   The Addend Register is loaded with the input 
standardized quantenary BYTE by the signal S^ at the generated T]_. 
This starts the process of multiplying the contents of Augend Register 
by four (the radix value of a two bit BYTE), and adding to it the contents 
of the Addend Register.   While this action is still going on at T2> the Sum 
Buffer is cleared and at T3 the Sum Buffer is loaded with the results of 
the summation process.   At the next self-generated TQ time the Augend 
Register and the Addend Register are cleared, and at the next self-gen- 
erated T^ the Augend Register is loaded with the contents of the Sum Buffer. 
In coincidence with the self-generated T^ signal, a Load Addend signal may 
occur to start the next iteration.   If it does not, the converter halts to 
await the Load Addend Signal (S^) to start the next iteration.   The succeeding 
iterations are performed as described until the last BYTE has been con- 
verted; then after clearing the Augend and Addend Registers, the converted 
data being held in the Sum Buffer is transferred to the Output Buffer in- 
stead of to the Augend Register.   The converter would then be in the proper 
condition to process properly the next data word. Figure 15 shows the circuitry 
required for the implementation of this method. 

4. 4. 2.2.2   To multiply the contents of the Augend Register decimally by 
4 and add to it the contents of the Addend Register, a BCD combination 
multiplier and adder circuitry has been designed.   Shown in Figure 16a 
and 16b are the BCD Truth Tables and the logic required to generate this 
function, which is obtained by gating through only 4 levels of logic.   Each 
decade of the Augend in conjunction with a possible two bit carry from 
the preceding decade or Addend character is used to gate out a decimal 
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BCD TRUTH TABLE FOR FUNCTION 

4(dcba) + qp - 10 q«p' + d'c'b'a' 

INPUT DATA OUTPUT DATA INPUT DATA OUTPUT DATA 

d c b a q p qV d'c'b'a1 d c b a q p q p d'c'b'a 

0 0 0 0 0 p 0 0 0 0 0 p 0 0 0 0 l p 0 0 0 0 1 p 
0 0 0 1 0 p 0 0 0 1 0 p 0 0 0 1 l p 0 0 0 1 1 p 
0 0 10 0 p 0 0 1 0 0 p 0 0 1 0 l p 0 1 0 0 0 p 
0 0 11 0 p 0 1 0 0 1 p 0 0 1 1 l p 0 1 0 1 0 p 
0 10 0 0 p 0 1 0 1 1 p 0 1 0 0 l p 0 1 1 0 0 p 
0 10 1 0 p 1 0 0 0 0 p 0 1 0 1 l p 1 0 0 0 1 p 
0 110 0 p 1 0 0 1 0 p 0 1 1 0 l p 1 0 0 1 1 p 
Olli 0 p 1 0 1 0 0 p 0 1 1 1 l p l l 0 0 0 p 
10 0 0 0 p 1 1 0 0 1 p 1 0 0 0 l p l l 0 1 0 p 
10 0 1 0 p 1 1 0 1 1 p 1 0 0 1 l p l l 1 0 0 p 

d c b a 
q P 
q P 

d'c'b'a' 

INPUT BCD (binary coded decimal) digit 
INPUT BCD carry or 2 bit BYTE 
OUTPUT BCD carry 
OUTPUT BCD digit 

d c b a and d'c'b'a' range in value between 0 and 9 

OF FUNCTION 

d c b a 
d c b a 
d c b 

q 
a 
P 

q p' d c V a' 

EXAMPLE: 

then 

since 

d c b a 
q P 
qV 

d'c'b'a' 

0 1 

0 1 

1 0 
1 1 
1 0 
1 1 

6 
3 
2 
7 

6 + 3 = 27 

150-1 

FIGURE 16a.  TRUTH TABLE FOR THE BCD X4 MULTIPLIER AND ADDER 
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sum, and at most, a two bit carry.   This is so, since a series of nines 
in the Augend Register when multiplied by four and having a carry of 
three added to it can at most generate a sum of 9 and a carry of three. 
This effect results in limiting the carry from any particular decade to 
the next higher decade.   At most, it can effect the least significant bit 
of the decade beyond, making it odd or even.   Since the propagation of 
carries is limited, conversion speed is high.   Furthermore, the cir- 
cuitry required is little more than required for 2 binary full adders. 

4. 4. 2.2. 3  The estimated time for conversion can be calculated by noting 
that two bits are processed at a time.   To process 30 bits, 15 iterations 
are required.   Assuming that each iteration can be completed in the 
time to gate through 4 levels of logic, the complete conversion requires 
15 times this value (60 levels) or 6.0usec plus 15 storage cycles or 
3 usec for a total conversion delay of 9 usec.   This more than meets the 
design goal for conversion speed. 

4. 4. 2.2. 4  Study favors this method since the circuit requirements are 
reasonable and their quantity and complexity are considered optimal. 
This technique also results in the shortest conversion time for circuitry 
operating at any given speed.   This method requires the following cir- 
cuitry: 

30 -Bit Word ENM 20 -Bit Word ENM 
Control Circuitry 7 7 7 7 
Combined X4 Multiplier 

and Adders 9 18 6 12 
Flip Flops:   Augend 36 9 24 6 

Addend 2 0.5 2 0.5 
Sum Buffer 36 9 24 6 

Drivers 10 1 10 1 

Equivalent Normalized Modules 45 33 
In Figure 4 is shown the module count and the conversion delays for Method 
2 as a function of the reciprocal data precision. 

4. 4. 2. 3  Implementation of Method 3.   The entire data word is transferred 
to the Dividend Register before the conversion process is initiated (see 
Figure 17).   When the data word has been transferred it is divided by ten 
by the divide networks and the remainder obtained stored in the Decimal 
Digit Register.   The quotient obtained replaces the original data word to 
initiate the next and similar division cycle.   When 9 division cycles have 
been performed, the Decimal Digit Register contains the 9 BCD charac- 
ters equivalent of the original 30 bits.   To facilitate the conversion process 
and optimize the conversion speed by a reasonable quantity of circuitry, 
the data word is processed piecemeal.   For this purpose the data word 
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is subdivided into octal (3 bit) characters and the divider network con- 
strained to operate upon 7 bits; four bits being the remainder from the 
preceding divider network output and three bits from the Dividend Register. 
The remainder from the preceding divider network, serving as one input 
to the following divider network is decoded to activate one of ten lines. 
The major two bits of the octal character serving as the other input to the 
divider network are decoded to activate one out of 4 lines by the Quantenary 
Decoder (QD).   The first divider network accepts as one input the most 
significant octal character decoded into one out of 8 lines, and the decoded 
next most significant octal character as its other input.   Since the least 
significant bit of the octal character merely makes the remainder gener- 
ated odd or even and does not affect the quotient, it is not included in the 
division process.   Thus, the divider network has 10 input lines corres- 
ponding to the value of the remainder from the preceding divider network 
and 4 lines corresponding to the major two bits of the octal character from 
the Dividend Register.   There are 40 possible ways of activating these 
lines and the appropriate value of the quotient is gated out on one of 8 
lines and appropriate value of the remainder on one of 5 lines.   The 5 
remainder lines are combined logically with the least significant bit of 
the input octal character to activate one out of ten lines to serve as one 
input to the next divider network. 

4. 4.2. 3.1  The Start of Message Signal SQ clears the Dividend Register. 
The Si signal loads the Dividend Register with a data word, clears the 
Decimal Digits Register with the generated T]_, and initiates the conver- 
sion process.   The data word is subdivided into octal characters which, 
after being decoded by their respective decoders, serve as inputs to the 
divider network chain.   A remainder, gated out by the preceding higher 
ranking divider network, serves as the other input.   While these divider 
networks are generating their quotient and remainders, the Quotient 
Register is cleared by the generated T2.   The quotient from each divider 
network is encoded into an octal character by the Octal Encoders (OE), 
and the remainder from the lowest ranking divider network is encoded into 
a BCD character by the BCD encoder (BCD E).   When T3 is generated 
the Quotient Register is loaded with the quotient and the Decimal Digits 
Register is loaded with the BCD character generated by the last divider 
network.   At cycle time TQ the Dividend Register is cleared and at T]_ 
it is loaded with the contents of the Quotient Register to initiate the next 
division cycle.   The succeeding division cycles are performed in the same 
way as the first; and at the end of the ninth cycle after the Decimal Digits 
Register is loaded with the last BCD character, the content of that register 
is loaded into the Output Buffer.   The next Si signal loads the next data 
word into the Dividend Register, clears the Decimal Digits Register, and 
initiates a new conversion process.   Each iteration is completed in about 
the time required to gate through 20 levels of logic, and the entire conver- 
sion in 9 such iterations for a total propagation delay due to 180 levels 
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of logic, or 18 ysec plus 9 storage cycles of 1. 8 ysec for a total conver- 
sion delay of 19. 8 usec.   This method therefore meets the design goal 
for conversion speed. 

9 Decade    ENM   6 Decade    ENM 

Divider Matrices 9 27 6 18 
Octal Decoders 1 1 0 0 
Quantenary Decoders 
Octal Encoders 

9 
9 

4.5 
4.5 

7 
6 

3.5 
3 

BCD Encoders 1 1 1 1 
Dividend Register Flip Flop 
Quotient Register Flip Flop 
Decimal Digits Register Flip Flop 
Drivers 

30 
27 
36 
10 

7.5 
7 
9 
1 

20 
18 
20 

7 

5 
4.5 
5 
1 

Equivalent Normalized Modules 52 41 

4. 4. 2. 3.2  While this method is a satisfactory one for converting binary 
numbers to decimal, it is, however, more complex, requires more cir- 
cuitry, and is only half as fast as conversion Method 2.   It is, therefore, 
not as desirable. 

4. 4. 3  Parallel Conversion of Binary to BCD.   In parallel (or broadside) 
conversion the entire data word is converted in one continuous stream 
conversion process.   (See Figure 18).   The first two 2 bit BYTES are 
combined by multiplying the most significant 2 bit BYTE by four and 
adding in the other 2 bit BYTE using the Combined X4 Multiplier and 
Adders as previously described in Method 2.   The result of this operation 
is presented as the input to the next level of combination multiplier and 
adders where the process is repeated using the next most significant 2 
bit BYTE.   This process continues using additional groups of combination 
multipliers and adders until the entire data word is processed, the final 
result being the required BCD equivalent of the 30 bit binary number. 
The required amount of circuitry is: 

20 bit number ENM 30 bit number   ENM 

Word Buffer Flip Flops 
Combination X4 Multiplier and Adders 
Drivers 

Equivalent Normalized Modules 
Conversion Delay 

In Figure 4 is shown the module count and conversion delay for parallel 
conversion as a function of reciprocal data precision.   In comparing the 
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DATA WORD IN QUATENARY BYTES 

01 02 03 04 05 06 013 014 0 15 

1 ' ' 

;   i 
* 

\ 

1 CMA * 
40I+Q2 « SI 

r i 

i 
1 

2 CMA 
4 SI + 03 » S2 

' r ' ■ 

2  CMA 
4S2+Q4«S3 

1 
I 

r 

1 ' 

8   COMBINED MULTIPLIER E AODERS 
4   SI2+ 014 «SI3 

V 
9 COMBINED MULTIPLIER B ADDERS 
4 SI4+QI5«SI4« BCD NUMBER 

- 
153- 

TO OUTPUT BUFFER 

*CMA« COMBINED X4 
MULTIPUER a ADOER 

FIGURE 18.PARALLEL DATA STREAM   BINARY TO BCD  CONVERTER 
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factors involved in this technique with those associated with the serial 
methods previously discussed and again referring to Figure 4, it is 
evident that the latter is considerably more economical in circuit require- 
ments at the expense of only a small increase in conversion delay.   How- 
ever, processing parallel data by serial methods is no problem since it 
can be stored in the Input Buffer from which it can be presented to the 
Converter in virtually any form desired.   Since this can readily be accom- 
plished, it is considered that it is unnecessary to further consider binary 
to BCD conversion of parallel inputs. 

4. 4. 4 In summary, of the three methods described, Method 2 is the 
most attractive in regard to conversion speed, circuit simplicity, and 
the quantity of circuitry required.   Parallel word conversion is to be 
accomplished by "shifting" out of the Input Buffer since direct parallel 
conversion is impractical. 

4. 5   CONVERSION OF DATA FROM TIME IN HOURS, MINUTES, 
SECONDS AND MILLISECONDS TO BINARY MILLISECONDS. 

4. 5. 1 General Considerations Effecting Time Conversion. 

4. 5. 1.1  Incoming time measurement data can be expected to be in the 
form of BCD hours, minutes, seconds, and fractional seconds to thou- 
sandths of seconds or milliseconds.   To avoid the necessity of operating 
with whole numbers and their associated fractions, the adopted value of 
the least significant binary bit shall be the millisecond.   Similarly, when 
converting from binary milliseconds, the converted units will be in terms 
of hours, minutes, and milliseconds. 

4. 5.1.2  Each digit of a number representing time in hours, minutes, 
and milliseconds has associated with it either some power of 10 or 6. 
Consequently, the conversion process will closely parallel the opti- 
mum BCD to binary and binary to BCD conversion already discussed. 
It is only necessary, therefore, that the difference of techniques or cir- 
cuit components be described. 

4. 5.1.3  As stipulated under the design criteria, the capacity of the con- 
verters under consideration was limited to a 9 decade decimal number or 
the equivalent of a 30 bit number.   The capacity of the converter is there- 
fore set at a maximum of 298 hours, 15 minutes, and 41.823 seconds, 
since this converts to one less than 2 to the 31 power which is the maximum 
value of a 30 bit number. 

4. 5. 2  The BCD to Binary Time Converter. 

39 



4. 5.2.1  Differences which exist between time conversion techniques and 
decimal to binary conversion techniques result from the fact that hours, 
minutes, and seconds of the time conversion problem are associated with 
a factor of 60 rather than 100.   Thus, for time conversion it is first nec- 
essary to convert the BCD hours to binary hours, then to electrically 
adjust the stream adders in order to multiply the binary hours by 6 to 
obtain tens of minutes.   The adder circuits are then again reconstituted 
to multiply binary tens of minutes by 10 to obtain binary minutes.   Once 
again the stream adder circuits are modified to multiply binary minutes 
by 6 to obtain binary tens of seconds and reconverted to continue the con- 
version of the remaining time digits.   The process can be summarized 
algebraically for the time data Hh hours, Mm minutes, Ss seconds as 
follows: 

10 (6 (10 (6 (10H + h) + M) + m) + S) + s    etc. 

4. 5.2.2  The multiplication by 6 as outlined above is accomplished by 
adding 4 and 2 times the number instead of 8 and 2 as in the straight 
decimal conversion.   Actual modification of the stream adders for this 
purpose is simply achieved through the use of switch logic which couples 
the respective bits from the 8 to 4 position as required.   Referring to 
Figures 5 and 6, the switch logic for controlling the multiplication factor 
is interposed between the Augend and Addend Registers on one hand and 
the stream adders on the other.   Figure 19 shows the required multiplier 
switch logic.   The required conversion time is comparable to that of the 
9 decade BCD to Binary Converter.   The required circuitry is: 

Units ENM 

Input Buffer Flip Flops 
Control 

Flip Flops 
Clock 
NOR Gates 
Hexidecimal Decoder 

Converter 
Addend Register Flip Flops 
Augend Register Flip Flops 
Sum Buffer Flip Flops 
Stream Adders/Full Adders 
Drivers 
Switch Logic NOR Gates 

Equivalent Normalized Modules 
Conversion Delay 

40 

12 3 

12 3 
1 1 

10 1 
1 1 

4 1 
27 7 
30 7.5 
30 30 
15 2 
50 5 

62 
56 ijsec 
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4. 5. 3  Parallel conversion is achieved through the same process as in 
the parallel decimal BCD to Binary Conversion (see Figure 7) except 
that the third and fifth groups of stream adders are constructed to multi- 
ply by 6 instead of ten.   However, as in the former case, because of the 
increased circuitry involved in this type of conversion it is considered 
more practical to have the Input Buffer shift the incoming parallel data 
in serial form for presentation to the Radix Converter.   The required 
amount of circuitry and conversion speed is exactly the same as for the 
9 decade parallel BCD to binary converter which is listed on page 22. 

4. 6   CONVERSION OF BINARY MILLISECONDS TO BCD HOURS, 
MINUTES, AND MILLISECONDS. 

4. 6.1 The optimum procedure for converting binary milliseconds to BCD 
base 60 time units is to use a variation of the Method 2 described above 
for converting binary numbers to decimal.   As before, the capacity of 
the converter is 30 bits of binary milliseconds or the equivalent of 298 
hours, 15 minutes, and 41,823 milliseconds. 

4. 6. 2 Whereas in the binary to decimal converter aU the BCD combined 
X4 multipliers and adders were to the base ten, in this case the 5th and 
7th stage combined multipliers and adders are to the base 6.   The num- 
ber in units of milliseconds is processed two bits at a time in order of 
decreasing significance.   As the decimal equivalent approaches the 60,000 
decimal milliseconds mark the substitution of the base 6 combined mult- 
plier and adders automatically adjusts the totals so that what would have 
been 60,000 is converted to 100,000.   Thus, by constraining the capacity 
of the 5th decade to 5 instead of 9, the first decades are limited to units 
of 60,000 milliseconds or one minute.   Similarly, the 7th decade is limited 
to 5 instead of 9, producing hours computed as multiples of 60 minutes. 

4. 6. 3  Figures 20a and 20b show the BCD Truth Tables and the required 
circuitry for the base 6 combined BCD X4 multipliers and adders.   The 
total required circuitry and speed capability is the same as that in the 
serial conversion Method 2 for binary decimal to BCD. 

4. 7   SUGGESTED PROCEDURES FOR THE CONVERSION OF MTXED 
NUMBERS. 

4. 7. 1 When mixed numbers must be converted from one radix represen- 
tation to another, the whole number portion and fractional portion usually 
require separate consideration.   In the conversion process of mixed deci- 
mal numbers to binary, the whole number portion is converted by a process 
involving binary operations and multiplications by ten.   The fractional 
portion, however, is most conveniently converted by a process employing 
decimal operations and multipliers of 2 or 2 raised to a small power. 
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BASE  6  BCD TRUTH TABLE FOR FUNCTION 

4(dcba)  + qp - 6  q'p'  + d'c'b'a' 

INPUT  DATA 

d c b a    q p 

OUTPUT  DATA 

0 0 0 0 
0 0 0 1 
0 0 10 
0 0 11 
0 10 0 
0 10 1 

0 
0 
0 
0 
0 
0 

q'p' 

0  0 
0 0 

d'c'b'a' 

0 0 
0 1 
0 0 
0 0 
0 1 
0 0 

0 p 
0 p 
1 p 
0 p 
0 p 
1 p 

INPUT DATA OUTPUT DATA 

d c b a q P q'p' d'c'b'a' 

0 0 0 0 1 P 0 0 0 0 1 p 
0 0 0  1 1 P 0 1 0 0 0 p 
0 0 10 1 P 0 1 0 1 0 p 
0 0 11 1 P 1  0 0 0 1 p 
0 10 0 1 P 1 1 0  0 0 p 
0 10 1 1 P 1 1 0 1  0 p 

d c b a    ■ INPUT BCD  (binary coded  decimal)   digit 
q p    =  INPUT BCD carry or 2  bit BYTE 
q'p'  » OUTPUT BCD carry 

d'c'b'a'   - OUTPUT BCD digit 
d c b a and d'c'b'a'  range  in value between 0 and 5 

ALTERNATE DESCRIPTION 
OF FUNCTION 

d c b a 
d c b a 
d c b a 

q P 

q'p'   d'c 'b'a' 

EXAMPLE . 

d c b a _ 0 1 1 1 _ 3 

q P = 1 0 = 2 

q'p' = 1 0 = 2 
d' c •b'a' = 0 0 1 0 = 2 

then 

since    4«3+2=6«2+2 

FIGURE 20a.  TRUTH TABLE FOR THE BASE 6 COMBINATION 
BCD X4 MULTIPLIER AND ADDER 
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4. 7. 2  In the conversion process of a mixed binary number the whole 
number portion is most conveniently converted by a process involving 
decimal operations and a multiplier of 2 or 2 raised to a small power 
while the conversion process for the fractional portion involves binary 
operations and multiplications by ten. 

4. 7. 3  The conversion process for a fraction from one radix represen- 
tation to another resembles the inverse of the conversion process 
required for a whole number.   Thus, the conversion process for deci- 
mal fractions to binary resembles the conversion process for whole 
numbers in binary to decimal.   This resemblance also holds true for 
the inverse conversion operations.   As a consequence it will be neces- 
sary that the translator contain essentially both the required radix con- 
verter for the whole number and inverse converter for the fractional 
number.   There may be advantages to this since the translator by 
containing both types of converters can then convert mixed numbers 
either to binary or to decimal with relative ease. 

4. 7. 4 Another method which may be employed to handle mixed numbers 
is to pre-multiply the number to be converted so that it becomes a whole 
number.   The result will be a known power of ten or two larger than re- 
quired and a simple shift in the powers of ten or two will yield the desired 
result.   For example, in the conversion of 1. 625 from decimal to binary 
to an accuracy of ten binary places or one part in 1024, the proper scale 
factor is 1024, the desired binary accuracy, divided by 1000, the deci- 
mal magnification factor.   Thus 1. 625 is multiplied by 1.024 which 
yields 1. 664.   When 1664 (1. 664 X 1000) is converted to binary, the 
result is: 

11010000000 
which is too large by a factor of 1024.   Now, moving the binary point 
ten places to the left (the inverse of the magnification factor) gives the 
correct result or 1.101.   Thus it is possible to convert decimal mixed 
numbers to binary by using decimal operations to prescale the original 
number by multiplying it by a factor which is equal to the desired bi- 
nary accuracy divided by the decimal magnification factor.   The result 
when converted to binary will be too large by a factor equal to the desired 
binary accuracy. 

4. 7. 5 In the conversion of binary mixed numbers to decimal, a scaling 
factor equal to the desired decimal accuracy divided by the binary mag- 
nification factor is chosen as above. The converted binary number will 
be too large by a factor equal to the desired decimal accuracy. 

4. 7. 6  It is also possible to convert the mixed number disregarding the 
decimal or binary point.   The converted binary result may be corrected 
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by multiplying it by the reciprocal of the magnification factor.   Simi- 
larly, binary mixed numbers may be converted to decimal and the 
converted decimal number may be corrected by multiplying it by the 
decimal equivalent of the binary magnification factor. 

4. 7. 7  The required pre- or post-scaling operations can be performed 
by the inclusion of appropriate units in the translator.    In general, 
however, this approach is to be avoided since the scale factors become 
numerically unsuitable for effecting multiplication by one or two addi- 
tion and shift operations.   In this case true multiplication units may be 
necessary and these in general are expensive in terms of circuitry and 
processing delay.   It is preferable, therefore, to follow the procedure 
wherein the whole number and fraction are processed separately even 
though this requires two types of converters. 
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Section 5.     CONCLUSIONS 

5.1 The following conclusions are based upon the current state of the 
electronic art in the utilization of solid state components and the em- 
ployment of flip flops as storage elements.   As the requirement for 
storage elements increases, the circuitry requirements become exten- 
sive to the point that despite their relative high cost, read-write 
circuitry and core drivers become at first competitive and finally more 
economical than flip flops.   When the full range of requirements for 
an in-line translator are specified in detail, it is probable that several 
hundred bits of storage may be required.   In addition, provisions will 
more than likely have to be made for the storage of procedural data. 
Thus, the currently recommended utilization of flip flops will very 
probably give way to magnetic core devices for at least part of the 
storage components. 

5.2 It appears also, that as molecular and integrated circuitry be- 
come commercially prevalent and more attractive in economy, some 
of the conclusions reached may need revision.   In particular, as the 
availability of magnetic core devices increases with the attendant 
increases in circuitry simplicity and conversion speed, parallel con- 
version techniques may prove to be more attractive than serial con- 
version. 

5. 3  The following conclusions have been reached on the basis of this 
study and current considerations. 

(1) There is a definite application for in-line translators in the 
range data handling network. 

(2) In-line translators have the capability of achieving adequate 
real-time operation and can convert as fast or faster than most pro- 
grammed high speed converters. 

(3) In-line translators can offer a significant economic advantage 
for heavy flow data conversion over conversion by means of stored 
programs. 

(4) The design and construction of in-line translators is techni- 
cally feasible and the elements required for construction are commer- 
cially available at reasonable cost. 

(5) In-line translators can be logically organized into basic 
functions which can be performed by standardized modular components. 

(6) By the selection of appropriate standardized sub-elements 
in-line translators can be adapted to a wide range of input and output 
requirements. 

(7) In-line translators can function without external assistance. 
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(8) The actual design of a complete in-line translator without stipu- 
lated input/output values for a specific application would be purely an 
academic exercise. 

(9) The basic functionally independent sub-element of any translator 
will be the Radix Converter. 

(10) By preconditioning input data, Radix Converters can be made 
system independent and therefore have universal application. 

(11) Whereas only four representative types of radix converters 
were designed, it demonstrated the feasibility of designing virtually any 
type needed. 
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